Radiosensitizer-eluting nanocoatings on gold fiducials for biological in-situ image-guided radio therapy (BIS-IGRT).

نویسندگان

  • D K Nagesha
  • D B Tada
  • C K K Stambaugh
  • E Gultepe
  • E Jost
  • C O Levy
  • R Cormack
  • G M Makrigiorgos
  • S Sridhar
چکیده

Image-guided radiation treatments (IGRT) routinely utilize radio-opaque implantable devices, such as fiducials or brachytherapy spacers, for improved spatial accuracy. The therapeutic efficiency of IGRT can be further enhanced by biological in situ dose painting (BIS-IGRT) of radiosensitizers through localized delivery within the tumor using gold fiducial markers that have been coated with nanoporous polymer matrices loaded with nanoparticles (NPs). In this work, two approaches were studied: (i) a free drug release system consisting of Doxorubicin (Dox), a hydrophilic drug, loaded into a non-degradable polymer poly(methyl methacrylate) (PMMA) coating and (ii) poly(d,l-lactic-co-glycolic acid) (PLGA) NPs loaded with fluorescent Coumarin-6, serving as a model for a hydrophobic drug, in a biodegradable chitosan matrix. Temporal release kinetics measurements in buffer were carried out using fluorescence spectroscopy. In the first case of free Dox release, an initial release within the first few hours was followed by a sustained release over the course of the next 3 months. In the second platform, release of NPs and the free drug was controlled by the degradation rate of the chitosan matrix and PLGA. The results show that dosage and rate of release of these radiosensitizers coated on gold fiducials for IGRT can be precisely tailored to achieve the desired release profile for radiation therapy of cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiosensitizer-eluting nanocoatings on gold fiducials for biological in-situ image-guided radio

Image-guided radiation treatments (IGRT) routinely utilize radio-opaque implantable devices, such as fiducials or brachytherapy spacers, for improved spatial accuracy. The therapeutic efficiency of IGRT can be further enhanced by biological in situ dose painting (BIS-IGRT) of radiosensitizers through localized delivery within the tumor using gold fiducial markers that have been coated with nano...

متن کامل

Biological in situ dose painting for image-guided radiation therapy using drug-loaded implantable devices.

PURPOSE Implantable devices routinely used for increasing spatial accuracy in modern image-guided radiation treatments (IGRT), such as fiducials or brachytherapy spacers, encompass the potential for in situ release of biologically active drugs, providing an opportunity to enhance the therapeutic ratio. We model this new approach for two types of treatment. METHODS AND MATERIALS Radiopaque fid...

متن کامل

Endoscopic ultrasound-guided fiducial marker placement for image-guided radiation therapy without fluoroscopy: safety and technical feasibility

BACKGROUND AND STUDY AIMS Endoscopic ultrasound (EUS)-guided fiducial marker placement for image-guided radiation treatment (IGRT) is becoming more widespread. Most case series report the procedure performed using fluoroscopy for spatial geometry although the benefits of this are unclear. The aim of our study is to report the technical feasibility, safety, and migration rate of fiducial marker ...

متن کامل

Health technology assessment of image-guided radiotherapy (IGRT): A systematic review of current evidence

Background: Image-guided radiotherapy used multiple imaging during the radiation therapy course to improve the precision and accuracy of health care provider's treatment. Objectives: This study aims to assess the safety, effectiveness and economic aspects of image-guided radiation therapy for decision-making about this technology in Iran. Methods: In this study, the most important med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 55 20  شماره 

صفحات  -

تاریخ انتشار 2010